

This article was downloaded by:

On: 25 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

Sonic Dewatering of Large Particle Dispersions

J. T. Sears^a; M. Clauson^a

^a DEPARTMENT OF CHEMICAL ENGINEERING WEST VIRGINIA UNIVERSITY, MORGANTOWN, WEST VIRGINIA

To cite this Article Sears, J. T. and Clauson, M.(1978) 'Sonic Dewatering of Large Particle Dispersions', *Separation Science and Technology*, 13: 8, 633 — 635

To link to this Article: DOI: 10.1080/01496397808057118

URL: <http://dx.doi.org/10.1080/01496397808057118>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

COMMUNICATION

Sonic Dewatering of Large Particle Dispersions

J. T. SEARS and M. CLAUSON

DEPARTMENT OF CHEMICAL ENGINEERING
WEST VIRGINIA UNIVERSITY
MORGANTOWN, WEST VIRGINIA 26506

Abstract

A new phenomenon has been discovered wherein separation of liquids from large particle dispersions can be accomplished with ultrasound. In our experiments, sonic capillary-wave action produced small droplets of water ejected using about 10% of the energy needed to thermally vaporize the water. In order for the separation to occur, the solid particle diameter must be greater than the droplet size, which can be predicted by Lang's formula. The solid particles remain behind as a disintegrable clump bound by occluded liquid.

A new phenomenon has been discovered in the West Virginia University Ultrasonics Laboratory. The separation of most of the liquid from dispersions containing solid particles (50 μm and larger) can be accomplished with sonic atomization. This could be a nonthermal alternative to filtration.

The separation is caused by a sonic action producing small liquid droplets which are ejected from the crests of standing sonic capillary waves (1). The liquid droplets are related to the wavelength of the standing waves and are smaller than the solid particles remaining. The solid particles tend not to be ejected from the dispersion as they interfere with the wave action. As liquid is ejected, the solid particles tend to accumulate into a ball-like jell, with liquid remaining between the interstices of the particles. The standing sonic waves can no longer form, as the wavelength

TABLE 1
Separation of Water from Char Dispersions^a

Power		Average sonic energy input unit water (cal/g)	Initial water content (%)	Final water content (%)	Char lost with water splash droplets (%)
Watts	dB				
<i>Particle size (146 to 220 μm)</i>					
25	154	39.8	91.6	48.3 \pm 4	3.7 \pm 3
30	156.5	30.5	93.0	46.3 \pm 3	25.0 \pm 6
50	158	17.4	92.5	42.7 \pm 8	40.0 \pm 15
100	159	36.0	92.9	48.2 \pm 3.5	72.0 \pm 12
150	160	50.8	92.6	43.6 \pm 15	80.1 \pm 11
<i>Particle size (74 to 104 μm)</i>					
25	154	104.1	92.2	44.3 \pm 11	1.8 \pm 2
30	156.5	100.5	92.7	49.6 \pm 14	15.2 \pm 8
45	158	18.1	91.2	53.2 \pm 7	55.1 \pm 16
50	158	41.3	93.1	40.1 \pm 11	73.1 \pm 10
100	159	37.4	94.3	40.1 \pm 25	91.4 \pm 5

^aSonic frequency = 20 kHz, mean water droplet size was 45 to 50 μm depending on dB level. Char solid density = 1.18 g/cc. The values shown are averages of 3 to 5 determinations each.

is longer than the free-liquid distances. The outside of the ball appears dry, and the ball disintegrates with a light touch.

Results of our experiments with a char-water dispersion (Table 1) show the final water content to be $\sim 45\%$, where initially the water content was 90 to 95%. Thus about 92% of the water has been removed. The remaining water corresponds to that held by surface tension in the void space between particles. The energy input of transducer power was $\sim 10\%$ of the energy needed to thermally vaporize the water which was separated. It was noted that at higher power levels, large amounts of char were in fact ejected during atomization. This is conjectured to be due to cavitation effects (2, 3) where we have found (2) that higher transducer power results in splash droplets with broader distribution of the liquid droplets. Cavitation is enhanced by low vapor-pressure liquids or high dissolved gas contents (3). As higher viscosities require larger transducer power to initiate atomization (3), lesser separation would probably result with viscous materials.

With micron or submicron solid particles, the droplets that are formed

contain the solid, and solids drying can in fact be accomplished (4). Thus it is apparent that the ratio of particle size to droplet size is a primary factor, the criterion being:

$$D_{\text{solid}}/D_{\text{drop}} > 1, \quad \text{for separation}$$

As D_{drop} is related to sonic frequency for capillary action by (1)

$$D_P = 0.34 \left(\frac{\sigma \mu \pi}{\rho f^2} \right)^{1/3}, \quad \begin{aligned} \text{where } \sigma &= \text{surface tension} \\ f &= \text{sonic frequency} \\ \mu &= \text{damping decrement} \end{aligned}$$

higher sonic (ultrasonic) frequencies would provide for separation of smaller-particle dispersions. Lower sonic frequencies provide for easier power input but the solid particles separated would be larger in size.

In summary, low sonic levels which just produce liquid atomization will eject and separate liquid droplets from a dispersion, leaving the larger solid particles in a moist ball.

REFERENCES

1. R. J. Lang, "Ultrasonic Atomization of Liquids," *J. Acoust. Soc. Am.*, 34, 6 (1962).
2. K. L. Huang, "Ultrasonic Atomization of Liquids," M.S. Thesis, West Virginia University, 1977.
3. J. T. Sears, K. Huang, S. Ray, and H. V. Fairbanks, "Effect of Liquid Properties on the Production of Aerosols with Ultrasound," in *Proceedings, 1977 IEEE Ultrasonics Symposium*, 1977, p. 131.
4. S. Ray, "The Effect of Ultrasonics on Spray Drying Processes," M.S. Thesis, West Virginia University, 1977.

Received by editor October 25, 1977

Revised January 31, 1978